Our Profile:
The journal AGRICULTURA (A) publishes scientific works from the following fields: animal science, plant production, farm mechanisation, land management, agricultural economics, ecology, biotechnology, microbiology
ISSN 1581-5439
Home Issues Issue 12 The use of artificial neural networks for compounds prediction in biogas from anaerobic digestion – A review

The use of artificial neural networks for compounds prediction in biogas from anaerobic digestion – A review

Tomaž LEVSTEK and Miran LAKOTA
pp. 15-22

In the survey, we summarized some of the most important researches on assessment and forecasting components of biogas and the substrate in the process of anaerobic digestion using artificial neural networks (ANNs). Here we consider especially hydrogen sulfide, ammonia, hydrogen, methane in biogas and heavy metals in substrate. The results show high prediction accuracy and usefulness of the ANNs. The predicted removal efficiency of a biofilter for treating hydrogen sulphide with ANN was validated with determination coefficient of 0.92. A simulating model for the performance of a granule-based H2-producing was able to effectively describe the daily variations of the reactor performance, and to predict the steady-state reactor performance at various substrate concentrations using ANN network and genetic algorithm. The values of training determination coefficients for H2 concentration in the biogas was 0.966, H2 production rate 0.810, H2 yield 0.882. The ANN learned the relationship between input and output well. The ANN model to predict the methane production on the basis of operational parameters was validated with correlation coefficient of 0.87. A back propagation artificial neural network (BP-ANN) algorithm for the simultaneous spectrophotometric determination of the cobalt and nickel complexes show the good regression between actual values and prediction values for cobalt and nickel concentration.

Key words: artificial neural networks, anaerobic digestion, prediction, biogas

REFERENCES

1. Abu Qdais H, Bani Hani K, Shatnawi N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic
algorithm. Resour. Conserv. Recycl. 2010;54:359-63.

2. Allen MR, Braithwaite A, Hills CC. Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ. Sci. Technol. 1997;31:1054–61.

3. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R. Biogas Handbook, University of Southern Denmark Esbjerg, 2008:7-16.

4. Al Seadi T. Good practice in Quality Management of AD Residues. University of Southern Denmark Esbjerg, 2009:3-4.

5. Alvarez JM. Biomethanization of the organic fraction of municipal solid wastes, IWA Publishing, 2003:6-17.

6. Arnold M. Reduction and monitoring of biogas trace compounds. VTT Technical Research Centre of Finland, 2009:15-9.

7. Attoh-Okine N, Basheer I, Chen D-H. Use of artificial neural networks in geomechanical and pavement systems. Trans. Res. Board, 1999;E-C012:5.

8. Basheer IA, Hajmeer M. A computational study on the performance of artificial neural networks under changing structural design and data distribution. Eur.
J. Oper. Res. 2002;138:155-77.

9. Bishop C. Neural networks for pattern recognition. Oxford University Press, 1995.

10. Becher R, Müller V and Gottschalk G. N5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase of Methanosarcina strain Göl is an Na+-translocating membrane protein. J. Bacteriol. 1992;174:7656-60.

11. Braun R. Biogas methangärung organischer abfallstoffe. Springer-Verlag Wien, New York, 1982.

12. Chambers AK, Potter I. Gas utilisation from sewage waste. Alberta Research Council, Canada. 2002:1-13.

13. Eklund B, Anderson EP, Walker BL, Burrows DB. Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ. Sci. Techno. 1998;32:2233–7.

14. Elias A, Ibarra-Berastegi G, Arias R, Barona A. Neural networks as a tool for control and management of a biological reactor for treating hydrogen sulphide. Bioproc. Biosyst. Eng. 2006;29:129–36.

15. Ermler U, Grabarse W, Shima S, Gonbeand M, and Thauer RK. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane
formation. Science 1997;278:1457-62.

16. Ferry JG. Fermentation of acetate. In: Methanogenesis. Chapman & Hall. New York, 1993:304-34.

17. Gen M, Cheng R. Genetic algorithms and engineering design. John Wiley & Sons, New York, 1997:1-4.

18. Goodwin JAS, Wase DAJ, Forster CF. Effects of nutrient limitation on the anaerobic upflow sludge blanket reactor. Enzyme Microb. Technol. 1990;12:877–84.

19. Hassoun MH. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, 1995.

20. Haykin S. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

21. Hulshoff Pol LW, Lens PNL, Weijma J, Stams AJM. New developments in reactor and process technology for sulfate reduction. Water Sci. Technol. 2001;44 (8):67-76.

22. Hussain MA. Review of the applications of neural networks in chemical process control - simulation and online implementation. Artif. Intell. Eng. 1999;13:55-68.

23. Jaffrin A, Bentounes N, Joan AM, Makhlouf S. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst. Eng. 2003;86:113-23.

24. Jönsson O, Polman E, Jensen JK, Eklund R, Schyl H, Ivarsson S. Sustainable gas enters the European gas distribution system. Danish Gas Technology
Center, 2003.

25. Kenenly WR and Zeikus JG. Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 1981;146(1):133-40.

26. Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S. Influence of Ni2+ and Co2+ on methanogenic activity and the amounts
of coenzymes involved in methanogenesis. J. Biosci. Bioeng. 2001;91(6):590-5.

27. Mosey FE, Swanwick JD, Hughes DA. Factors affecting the availability of heavy metals to inhibit anaerobic digestion. Water Pollut. Control. 1971;70:668-78.

28. Mu Y, Yua HQ. Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. Int. J. Hydrogen Energ. 2007;32:3308-14.

29. NETL (National Energy Technology Laboratory). Fuel Cell Handbook. Department of Energy, Morgantown U.S., 2000:5-17.

30. Oleszkiewicz JA, Sharma VK. Stimulation and inhibition of anaerobic processes by heavy metals. Biol. Waste. 1990;31:45–7.

31. Ozkaya B, Demir A, Sinan Bilgili M. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ. Modell. Softw. 2007;22:815-22.

32. Pal SK and Srimani PK. Neurocomputing: motivation, models, and hybridization. Computer 1996:24–8.

33. Pham DT. Neural networks in engineering. In: Rzevski G. et al. , Applications of Artificial Intelligence in Engineering IX, AIENG/94, Comput. Mech.1994:3–36.

34. Reinhart DR. A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a US experience. Waste Managem. 1993;11:257–68.

35.     Rezaei B, Ensafi AA, Shandizi F. Simultaneous determination of cobalt and nickel by spectrophotometric method and artificial neural network. Microchem. J. 2001;70:35-40.

36. Shin H-C, Park J-W, Park K, Song H-C. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ. Pollut. 2002;119:227–36.

37. Schalkoff RJ. Artificial Neural Networks. McGraw-Hill, New York, 1997.

38. Scheutz C, Mosbaek H, Kjeldsen P. Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual. 2004;33:61-71.

39. Schomaker A. Anaerobic digestion of agro-industrial wastes: information networks technical summary on gas treatment. AD-NETT Project FAIR-CT96-2083
(DG12-SSMI). 2000:6-8.

40. Spiegel RJ, Preston JL, Trocciola JC. Test results for fuel-cell operation on landfill gas. Energy 1997;22:777-86.

41. Stachowske M. Verfahrensgrundsätze zur Minimierung der Schwefelwasserstoffkonzentration im Faulgas mit Eisensalzen, Schriftenreihe Siedlungswasserwirtschaft Bochum. Gesellschaft zur Förderung des Lehrstuhls für Siedlungswasserwirtschaft und Umwelttechnik an der Ruhr-Universität Bochum, 1991;19.

42. Strik D, Domnanovich AM, Zani L, Braun R, Holubar P. Prediction of trace compounds in biogas from anaerobic digestion using the Matlab
Neural Network Toolbox. Environ. Modell. Softw. 2005;203–10.

43. Takashima M, Speece RE. Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT. Water Pollut. Control 1989;61:1645-50.

44. Wellinger A, Linberg A. Biogas upgrading and utilization-IEA Bioenergy Task. 2000;24.

45. Zandvoort MH, Geerts R, Lettinga G, Lens PNL. Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel
and cobalt. Enzyme Microb.Technol. 2003;33:190-8.

46. Zupan J, Gasteiger J. Neural networks in chemistry and drug design. Wiley-VCH, Weinheim 1999:9-36.