Our Profile:
The journal AGRICULTURA (A) publishes scientific works from the following fields: animal science, plant production, farm mechanisation, land management, agricultural economics, ecology, biotechnology, microbiology
ISSN 1581-5439
Home Issues Issue 17 Bacillus megaterium (AUM72)-mediated induction of defense related enzymes to enhance the resistance of turmeric (Curcuma longaL.) to Pythium aphanidermatumcausing rhizome rot

Bacillus megaterium (AUM72)-mediated induction of defense related enzymes to enhance the resistance of turmeric (Curcuma longaL.) to Pythium aphanidermatumcausing rhizome rot

Uthandi BOOMINATHAN and Palanivel K. SIVAKUMAAR

pp. 1-8

ABSTRACT

Bacillus megaterium (AUM72),a plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere soil were evaluated for their ability to control rhizome rot in turmeric (Curcumalonga L).Under in vitro condition, B.megaterium (AUM72), showed maximum inhibition of mycelia growth of Pythium aphanidermatum, were found effective in reducing rhizome rot of turmeric both under greenhouse and field conditions and increased the plant growth and rhizome yield. This isolate was further tested for its ability to induce production of defense related enzymes and chemicals in plants.

Increased activities of phenylalanine ammonia lyase, peroxidase, polyphenol oxidase,chitinase and β-1,3 –glucanase were observed in B. megaterium(AUM72) pre-treated turmeric plants challenged with P.aphanidermatum. Higher accumulation of phenolics was noticed in plants pre-treated with B.megaterium (AUM72) against P.aphanidermatum. Thus the present study shows that in addition to direct antagonism and plant growth promotion, induction of defense –related enzymes involved in the phenyl propanoid pathway collectively contributed to enhance resistance against invasion of Pythiumin turmeric.

Key words: Bacillus megaterium, Pythium aphanidermatum, induced resistance, peroxidase

CITATED REFERENCES :

  1. Abdelzaher HMA. Biological control of rhizome rot of cauliflower (caused by Pythium ultimum var. ultimum) using  selected  antagonistic  rhizospheric  strains  of Bacillus subtilis. NZ. J. Crop. Hortic. Sci. 2003;31:209–220.
  2. Anitha K, Tripathi NN. Laboratory screening of fungal and bacterial antagonist against Rhizoctonia solaniand Pythium aphanidermatuminciting seedling diseases of okra. Ind. J. Plant Protect. 2001;29:146–148.
  3. Asaka  O,  Shoda  M.  Biocontrol  of Rhizoctonia  solanidamping-off of tomato with Bacillus subtilisRB14. Appl. Environ. Microbiol. 1996;62:4081–4085.
  4. Bakker  PAHM,  Ran  LX,  Pieterse  CMJ,  Van  Loon LC.  Understanding  the  involvement  of rhizobacteria mediated induction of systemic resistance in biocontrol of plant diseases. Can. J. Plant Pathol. 2003;25:5–9.
  5. Bradford  MM.  A  rapid  and  sensitive  method  for quantification  of  microgram  quantities  of  protein utilizing  the  principle  of  protein  dye  binding.  Ann. Biochem. 1976;72:248–254.
  6. Chen C, Belanger RR, Benhamou N, Paulitz TC Induced systemic resistance (ISR) impairs pre-and post infection development of Pythium aphanidermatumon cucumber roots. Eur. J. Plant Pathol. 1998;104:877–886.
  7. Chen C, Belanger RR, Benhamou N, Paulitz TC. Defense enzymes induced in cucumber roots by treatment with plant  growth  promoting  rhizobacteria  (PGPR)  and Pythiumaphanidermatum.  Physiol.  Mol.  Plant  Pathol. 2000;56:13–23.
  8. Constantinescu  F.  Extraction  and  identification  of antifungal  metabolites  produced  by  some  Bacillus subtilis strains. Analele Institutului de Cercet ri pentru Cereale Protectia Plantelor. 2001;31:17–23.
  9. Constantinescu  F,  Sesan  TE.  Soil-borne  fungi  and host  plant  influence  on  the  efficacy  of Bacillus  subtilisbiocontrol agents. Bull OILB/SROP. 2002;25:349–352.
  10. Dalisay RF, Kuc JA. Persistence of reduced penetration by Colletotrichum lagenariuminto cucumber leaves with induced systemic resistance and its relation to enhanced peroxidase  and  chitinase activity.  Physiol.  Mol.  Plant Pathol. 1995;47:329–338.
  11. Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Niholson RL. Phenylalanine ammonia lyase and hydroxyl cinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 1984;25:111–123.
  12. Eshita  SM,  Roberto  NH,  Beale  JM,  Mamiya  BM, Workman  RF.  Bacillomycin  Lc,  a  new  antibiotic  of the  iturin  group:  isolations,  structures,  and  antifungal activities  of  the  congeners.  J.  Antibiot.  1995;48:1240–1247.
  13. Gomez  KA,  Gomez  AA.  Statistical  procedures  for agricultural  research.  New  York:  Wiley.
  14. Gueldner  RC, Reilly  CC,  Pusey  PL,  Costello  CE,  Arrendale  RF,  Cox RH, Himmelsbach DS, Crumley FG, Cutler HG. 1988. Isolation  and  identification  of  iturins  as  antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 1984;36:366–370.
  15. Hammerschmidt  R,  Nuckles  EM,  Kuc  J.  Association of enhanced peroxidase activity with induced systemic resistance  of  cucumber  to Colletotrichum  lagenarium. Physiol Plant Pathol. 1982;20:73–82.
  16. Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciensRC–2. Phytochem. 2002;61:693–698.
  17. Howie  WJ,  Suslow  TV.  Role  of  antibiotic  biosynthesis in  the  inhibition  of  Pythiumultimum in cotton spermosphere  and  rhizosphere  by  Pseudomonas fluorescens. Mol. Plant - Microbe Interact. 1991;4:393–399.
  18. Huang SN, Shen HS, Wu HM. Biocontrol of cucumber seedling damping off (Pythium aphanidermatum) in  soilless  culture  with  Bacillus licheniformisand Trichodermaspp. Chin. J. Biol. Control 1999;15:45.
  19. Klich  MA,  Lax  AR,  Bland  JM.  Inhibition  of  some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 1991;116:77–80.
  20. Kloepper  JW,  Schroth  MN,  Miller  TD.  Effects  of rhizosphere  colonization  by  plant  growth  promoting rhizobacteria  on  potato  plant  development  and  yield. Phytopathol. 1980;70:1078–1082.
  21. Maloupa  E,  Gerasopoulos  D.  Biological  control  of root  pathogens  in  soilless  culture  using  bacteria.  Acta Horticulturae 2001;548:393–400.
  22. Mayer  AM,  Harel  E,  Shaul  RB.  Assay  of  catechol oxidase a critical comparison of methods. Phytochem. 1965;5:783–789.
  23. McKeen CD, Reilly CC, Pusey PL. Production and partial characterization  of  antifungal  substances  antagonistic to Monilia fructicolafrom Bacillus subtilis. Phytopathol. 1986;76:136–139.
  24. Meena  B,  Radhajeyalakshmi  R,  Vidhyasekaran  P, Velazhahan R. Effect of foliar application of P. fluorescens on  phenylalanine  ammonia  lyase,  chitinase  and  β-1,3 glucanase and accumulation of phenolics in rice. Acta Phytopathol. Entomol. Hungarica 1999;34:307–315.
  25. Meena B, Ramomoorthy V, Marimuthu T, Velazhahan R. Pseudomonas fluorescenssystemic resistance against late  leaf  spot  of  groundnut.  J.  Mycol.  Plant  Pathol. 2000;30:151– 158.
  26. Meena RL, Mathur K. Evaluation of biocontrol agents for  suppression  of  rhizome  rot  of  ginger.  Ann.  Agric. Bio. Res. 2003;8:233–238.
  27. Moyne  AL,  Shelby  R,  Cleveland  TE,  Tuzun  S. Bacillomycin D: an iturin with antifungalactivity against Aspergillus flavus. J. Appl. Microbiol. 2001;90:622–629.
  28. Nadlony L, Sequira L. Increase in peroxidase activities are not directly involved ininduced resistance in tobacco. Physiol. Plant Pathol. 1980;16:1–8.
  29. Nageshwara  Rao  TG.  Turmeric  rhizome  rot  and  its management. Spice India. 1994;7:17–19
  30. Pieterse  CMJ,  Van  Pelt  JA,  Van  Wees  SCM,  Ton  J, Knoester KML, Keurentjes JJB. Rhizobacteria-mediated induced  systemic  resistance:  triggering,  signalling  and expression. Eur. J. Plant Pathol. 2001;107:51–61.
  31. Radjacommare  R. Pseudomonas  fluorescens mediated systemic resistance in rice againstsheath blight disease and leaf folder insect. M.Sc. (Ag.) Thesis, Tamil Nadu Agricultural  University,  Coimbatore,  India  2000,  p. 122.
  32. Radjacommare  R,  Ramanathan  A,  Kandan  A,  Harish S, Thambidurai GV, Sible G, Ragupathi N, Samiyappan R.  PGPR  mediates  induction  of  pathogenesis  related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi cultivars. Plant Soil 2005; 266:165–176.
  33. Ramamoorthy  V,  Raguchander  T,  Samiyappan  R. Induction  of  defense-related  proteins  in  tomato roots  treated  with Pseudomonas  fluorescens Pf1  and Fusariumoxysporum f.  sp. lycopersici.  Plant  Soil  2002; 239:55–68
  34. Ramamoorthy  V,  Viswanathan  R,  Raguchander  T, Prakasam  V,  Samiyappan  R.  Induction  of  systemic resistance by plant growth promoting rhizobacteria in crop plant against pest and diseases. Crop Protect. 2001; 20:1–11.
  35. Rathiah Y. Rhizome rot of turmeric. Ind. Phytopathol. 1982;35:415–417.
  36. Reimers  PJ,  Guo  A,  Leach  JE.  Increased  activity  of  a cationic  peroxidase  associated  with  an  incompatible interaction between X. oryzae pv oryzaeand rice (Oryza sativa). Plant Physiol. 1992;99:1044–1050.
  37. Saravanakumar  D.  Rhizobacteria  induced  systemic resistance  against  Biotroph  (Exobasidium  vexans)  and Necrotroph  (Macrophominaphaseolina)  pathogens  in tea  and  green  gram.  M.Sc.  (Ag.)  Thesis.  Tamil  Nadu Agricultural  University,  Coimbatore,  India,  2002,  p. 120.
  38. Schaad  NW.  Laboratory  guide  for  identification  of plant pathogenic bacteria. In: Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by B. cereusUW 85. Appl. Environ. Microbiol. 1994;60:2023–2030.
  39. Silva  HSA,  da  Silva  Romeiro  R,  Macagnan  D,  de Almeida  Halfeld-Vieira  B,  Pereira  MCB,  Mounteer A.  Rhizobacterial  induction  of  systemic  resistance  in tomato  plants:  nonspecific  protection  and  increase  in enzyme activities. Biol. Control 2004;29:288–295.
  40. Van  Loon  LC,  Bakker  PAHM,  Pieterse  CMJ.  Systemic resistance  induced  by  rhizosphere  bacteria.  Ann.  Rev. Phytopathol. 1998;36:453–483.
  41. Van Peer R, Neimann GJ, Schippers B. Induced resistance and  phytoalexin  accumulation  in  biological  control  of Fusarium wilt  of  carnation  by  Pseudomonas sp.  strain WCS417r. Phytopathol. 1991;81:728–734.
  42. Van Peer R, Schippers B. Lipopolysaccharides of plant growth promoting Pseudomonasspp. strain WCS417r. induce  resistance  in  carnation  to  Fusarium wilt. Netherland J. 1992;98:129–139.
  43. Wei  L,  Kloepper  JW,  Tuzun  S.  Induced  systemic resistance  to  cucumber  diseases  and  increased  plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathol. 1996;86:221–224.
  44. Whipps JM, Lumsden RD. Biological control of Pythiumspecies. Biocontrol Sci. Technol. 1991;1:75–90.
  45. Xue L, Charest PM, Jabaji-Hare SH. Systemic induction of  peroxidases,  β-1,3-  glucanases,  chitinases  and resistance  in  bean  plants  by  binucleate Rhizoctonia species. Phytopathol. 1998;88:359–365.
  46. Zdor  RE,  Anderson  AJ.  Influence  of  root  colonizing bacteria  on  the  defense  responses  in  bean.  Plant  Soil 1992;140:99–107.
  47. Zehnder G, Kloepper JW, Yao C, Wei G. Induction of systemic  resistance  in  cucumberagainst  cucumber beetles  (Coleoptera:  Chrysomelidae)  by  plant  growth promoting rhizobacteria. J. Econ. Entomol. 1997;90:391–396.
  48. Zehnder  GW,  Murphy  JF,  Sikora  EJ,  Kloepper  JW. Application of rhizobacteria for induced resistance. Eur J. Plant Pathol. 2001;107:39–50.
  49. Zhou T, Paulitz JC. Induced resistance in the biocontrol of Pythium  aphanidermatum by  Pseudomonas spp.  on cucumber. J. Phytopathol. 1994;142:51–63.
  50. Zieslin  N,  Ben–Zaken  R.  Peroxidase  activity  and presence  of  phenolic  substances  in  peduncles  of  rose flowers. Plant Physiol. Biochem. 1993;31:333–339.